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Abstract 

Computational design of new materials relies on accurate descriptions of interatomic 

potentials. Such potentials can be realized within the Multi-Body Expansion (MBE) 

framework, where the expansions constructed using ab-initio calculations offer a 

generalized potential that can be used to describe energetics, since energies can be 

conceived as summations of the small cluster contributions. Furthermore, MBE technique 

focus on positional degrees of freedom, thus, it would eliminate a significant amount of 

expensive and time consuming energy minimization required to search for stable phase 

structures. However, in practice, obtaining the N-body (N>2) potentials is quite a 

challenging problem and this has been the focus of our work.  

 

Introduction and Background 

 

Advances in Molecular Dynamics (MD) and Monte Carlo (MC) techniques have made 

possible in the recent years the systematic probing of material properties (phase 

transitions, thermophysical properties) using computer experiments. The coupling of 

these techniques with advanced statistical methods would enable us to systematically 

scan for materials with extreme properties. One can imagine a scenario in which the 

desired properties are first specified and then an extensive computational search is 

performed to discover a particular material that realizes those (Materials by Design). 

Subsequently, targeted experiments are performed to actually create this material in the 

lab. Such a procedure would increase the rate of new discoveries having a profound 

effect on the development of new technologies, saving at the same time billions of dollars. 

However, the magic ingredient that connects the MD and MC methods with the real 

world is a physically accurate description of the energetics of the materials. Such a 

description is provided through quantum mechanical calculations, albeit at a tremendous 

computational cost. Thus, the development of efficient ways to tabulate the results of 

quantum mechanical calculations is a necessary requirement towards the realization of 

Materials by Design.  

 

We first review the atomistic aspects of this work using the MBE (multibody energy 

expansion). We want to predict extremal properties from first principles. To do this 

intelligent alloying, we need a method that allows structure and property prediction of 

multi-atom systems that are not necessarily on a Bravais lattice (like FCC, BCC, etc.). 

We need to be able to examine configurations of atoms that are placed anywhere in space 

(this makes this method very different from the cluster expansion method where the 

atoms are in a given fixed lattice and the only thing you change is what atom let us say A 

or B you place in each lattice location). We expand the energy in two body, three-body, 
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etc. interactions (Figure 1). This is not an obvious trivial expansion as the curse of 

dimensionality hits you fast and the recursive calculation of these many body potentials is 

very difficult.  

 

 
Figure 1: The multibody energy expansion (MBE). 

 

 

Methods for Constructing the Potentials 

 

In the initial execution of this project, N-body potentials were generated by tessellating 

the hyper-surface and approximating the energy using the finite element method. 

Convergence characteristics were significantly improved by weighting the energies 

obtained from various truncation of the many body expansion. However, the finite 

element based tessellation of the hyper-space places extensive restrictions on the 

accuracy of the approximation. Moreover, the N-th order potential lies in 3N-6 

dimensional space and finite element tessellation (and subsequent searching and 

interpolation) of spaces beyond 6 dimensions becomes computationally ineffective. In the 

second year, we incorporated the newly developed adaptive sparse grid collocation 

(ASGC) method based on Smolyak algorithm into sampling the topology of the clusters 

to construct these N-body potentials. Unfortunately, we were unable to interpolate 

energies of larger that N=5 clusters with this method because the increasing 

dimensionality of the configuration space required a computationally forbidding number 

of electronic energy calculations. 

 

During the third year, it became apparent we had to move to a grid-less interpolation 

scheme. We studied Distance Geometry techniques used in the Protein Folding literature 

to mathematically describe the configuration space and developed a new that enabled us 

to sample it efficiently. The recently developed Multinomial Expansion Method (MEM) -

used in the computational Chemistry literature for the construction of Potential Energy 

Surface (PES) to study chemical reactions – was chosen as the most promising candidate 

interpolation scheme. It is the first interpolation scheme that effectively incorporates all 

invariance principles of a potential energy surface in a single functional form. The most 

important such invariance principle is the permutation invariance with respect to atoms of 
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the same type. The effect of this is a drastic reduction on the number of required ab initio 

calculations, thus making possible the construction of MBE of higher orders. We 

subsequently improved the fitting capabilities (MEM) by putting it in a Bayesian 

framework. The most important new contribution is the use of the Bayesian variance to 

quantify the informational content of each point in the configuration space that lead us to 

an efficient adaptive scheme that minimizes the required number of electronic 

calculations even further. We demonstrated that this new technique considerably 

improves the quality of the samples and outperforms the random selection of data points. 

We were able to construct the ab initio PES of Platinum clusters of up to 6 atoms with 

only a few thousand electronic calculations. The ab initio PES were used to find the 

stable structures of small Pt clusters using Simulated Annealing. The results were found 

to be in very good agreement with those found in the literature. The constructed Pt PES’s 

were also used to fit the interatomic potentials up to order 6. It was shown that those 

become less and less important as their order increases, albeit slowly in low energy 

regions. We used the potentials to investigate the performance Multi-Body Expansions of 

various orders for Pt clusters of up to 10 atoms. It was demonstrated that interactions of 

at least 5 atoms are required to qualitatively describe Pt clusters. Finally, we observed 

that the error introduced during the fitting procedure of the interatomic potentials 

propagates in a complicated manner through the Multi-Body Expansion formula making 

its naive application to big clusters questionable. It is the object of our current research to 

investigate the propagation of this error through the MBE formula and design effective 

techniques to filter it out. We believe that such filtering schemes have to be case specific 

(different for each material) and should utilize further physical information. This problem 

constitutes the final obstacle towards the construction of fully transferable potential 

energy surfaces using the MBE framework. 

 

With the PES surfaces in place, exploration of the energy landscape in the high 

dimensional configuration space becomes an easier task that could potentially 

revolutionize the search for materials for extremal properties. In our immediate plans we 

are working towards integration of PES meta models with MD and MC techniques to 

allow us computing materials with desired mechanical and thermophysical properties, 

phase transition characteristics,  etc. Many applications to surface design (e.g. of Pt 

clusters to maximize H-adsorption) are also anticipated.  

 

In the remaining of this final report, we first briefly discuss the developments of FEM 

like tessellation techniques of the configuration space for PES construction. For brevity 

of the report we do not discuss the activities on the sparse grid interpolation approach 

since the number of ab initio simulations needed with this method was prohibitory high. 

We finally conclude with the Bayesian framework for interpolating potentials using 

invariant polynomials in the high-dimensional configuration space. It is this framework 

that we believe provides the best available option for PES surrogate construction using 

the minimum number of ab initio runs for properly chosen realizations in the 

configuration space.  
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The effect of structural relaxations in alloys is described using a multi-body energy expansion
formalism. N-body potentials in the multi-body expansion are computed from energies of isolated
clusters, which in turn, are calculated from empirical potentials or self-consistent quantum mechan-
ical calculations. Convergence characteristics of multi-body expansions (MBE) are improved by
weighting energies obtained from various truncations of many-body expansion in a new method
called weighted MBE (wMBE). It is shown that multi-body expansions of many-atom systems can
be efficiently constructed using interpolation of isolated cluster energies from databases. In contrast
to the method of cluster expansion, wMBE focuses on positional degrees of freedom and hence,
explicitly handles structural relaxations during computations of stable atom clusters and periodic
or amorphous phase structures.

PACS numbers: 64.60.Cn, 65.40.-b, 61.66.Dk, 05.50.+q

I. INTRODUCTION

Calculation of stable structures of alloys, clusters, sur-
faces and molecules from first-principles is an important
step towards design of materials with exceptional proper-
ties. Identification of stable alloy phases aid in construc-
tion of phase diagrams from first-principles. Because of
the immense variety of phase structures, identification of
stable structures at different combinations of the alloying
elements is a non-trivial problem. While a first-principles
approach based on density functional theory (DFT) pro-
vide a rigorous way for calculating formation energies of
phase structures, the computational complexity of per-
forming fully-relaxed calculations over the entire set of
possible phase structures makes this method prohibitive.
Techniques such as cluster expansion 1–7 and more re-
cently, data mining techniques8,9 allow one to accelerate
the search for stable phase structures.

In cluster expansion methods (CEM)1–4, the relaxed
energy of an atomic structure is represented as a lin-
ear combination of characteristic energies of clusters of
atoms over a fixed lattice. The coefficients in the clus-
ter expansion are computed using relaxed DFT energy
calculations of few prototype structures1. This method
includes only ordering degrees of freedom as provided by
different possible arrangements of atom types on a fixed
parent lattice. Consequently, CEM fails in cases where
the alloy phases have complex structures that are dif-
ferent from the superstructures of the underlying parent
lattice (for example, FCC or BCC lattices) and exhibits
convergence issues in cases where structural relaxation
effects are dominant5,6 (for example, in alloys involving
constituents with large size differences).

In another technique called multi-body expansion

(MBE), N -body potentials (or otherwise, cluster poten-
tials10) constructed from ab-initio calculations are used
to describe energies of arbitrary atomic structures as a
function of atom positions. The total energy is repre-
sented as a summation over potentials of underlying iso-
lated atom clusters in the structure, with series terms in-
volving pair, three-body, four-body,.., N -body potentials.
Up to third–order truncations of multi-body expansions
have been previously used in related empirically derived
potentials, namely the Gupta11 and Murrell–Mottram
(MM)12–15 potentials. Multi-body potentials focus on
positional degrees of freedom and hence, explicitly han-
dles structural relaxations during computations of sta-
ble phase structures. Structural relaxation effects can
be treated in a cluster expansion approach by combin-
ing it with position-dependent potentials in the form of
a hybrid cluster expansion6. Another method combining
CEM and multi-body potentials was proposed recently
for introducing positional degrees of freedom in a more
generalized cluster expansion16,17. However, building the
N -body potentials from atomistic calculations is quite
a challenging problem. Firstly, the number of clusters
(and thus, the number of cluster energies that need to be
calculated) in an N -atom system increases geometrically
with the order of expansion (Fig. 1). Secondly, although
the approach provides good convergence for rare-gas crys-
tals, convergence of MBE is not smooth for metallic crys-
tals18,21. Absence of smooth convergence does not allow
establishment of a hard cut-off for the series terms. Con-
sequently, there has been no published reports of a multi-
body expansion constructed directly from first-principle
calculations.

This paper addresses these drawbacks by proposing a
multi-body expansion with weighted terms. Using this
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FIG. 1: Increase in the total number of clusters involved in a
multi-body expansion for a 32-atom system with the order of
expansion.

technique, it becomes possible to accurately compute en-
ergies of N -atom systems from knowledge of small cluster
energies computed from first principles. The efficiency
of this new method called weighted multi-body expan-
sion (wMBE) is emphasized through examples in this
work. Another contribution of this paper is a formal
technique to rapidly calculate multi-body expansions us-
ing linear interpolation over tessellated cluster configura-
tional spaces. MBE using interpolated energies is several
orders of magnitude faster than using DFT calculations,
since cluster energies are computed beforehand and are
directly sampled from the database when computing the
multi-body expansion.

A. Multi-body expansion methodology

Consider, for instance, a configuration of M -atoms
(possibly all different), whose energy we intend to com-
pute. We denote the total energy of this M -particle
system using EP = EP (X1, X2, . . . , XM ), where P is
the order of the expansion used and the position Rn

of atom n is grouped together with the species of atom
n denoted by an integer σn, Xn = (Rn, σn). As the
order of labelling the M atoms is arbitrary, the form
of EP (X1, . . . , Xi, . . . , Xj , . . . , XM ) must be symmetric
with respect to interchange of Xi and Xj .

From here on, we denote M as the total number of
atoms in the system, N = 1, 2, . . . , P denotes a N -
atom cluster within the M−atom system. Further, L =
1, 2, . . . , N denotes an arbitrary L-atom cluster within an
N−atom cluster. The energy EP of an M -particle sys-
tem is represented as summation over a series of N -body

interaction potentials V (N) via

EP (X1, X2, . . . , XM ) =

P∑

N=1

E(N)(X1, X2, . . . , XM ),

E(N) =

M∑

m1=1

M∑

m2=m1+1

. . .

M∑

mN =mN−1+1

V (N)(Xm1
, Xm2

, . . . , XmN
). (1)

The potentials can be inverted via the Mobius inver-
sion approach from number theory. Mobius inversion has
been used previously for extraction of potentials from en-
ergy data by Chen19,20 although in a different context.
In the case of multi-body potentials V (N), the Mobius
inversion is given as16:

V (N)(X1, X2, . . . , XN) =

N∑

L=1

(−1)N−L

N∑

m1=1

N∑

m2=m1+1

. . .

N∑

mL=mL−1+1

E∗(Xm1
, Xm2

, . . . , XmL
).(2)

Here, we denote the energies of L−atom clusters within
the N−atom cluster as E∗. The above equation con-
stitutes a unique definition of N -body potentials V (N)

which are structure-independent because this equation
does not carry any information about the environment
of the atom clusters16. V (2)(Xi, Xj) can be understood
as the excess energy attributed to pair interactions in an
isolated atom pair i,j, i.e., V (2)(Xi, Xj) = E∗(Xi, Xj) −

E∗(Xi)−E∗(Xj). Similarly, V (3)(Xi, Xj, Xk) can be un-
derstood as the excess energy attributed to three-body
interactions in a isolated trimer (i, j, k):

V (3)(Xi, Xj , Xk) = E∗(Xi, Xj , Xk)

− (V (2)(Xi, Xj) + V (2)(Xj , Xk) + V (2)(Xi, Xk))

− (E∗(Xi) + E∗(Xj) + E∗(Xk)). (3)

Once the potentials V (N) have been constructed, they
can be used to calculate the energy EP (X1, X2, . . . , XM )
for a M -atom system using Eq. (1). The first critical
requirement of the technique is the knowledge of com-
plete energy surface (cluster energies versus atom po-
sitions and types) of small isolated clusters of atoms
(E∗, L = 1, . . . , 5) for building the potentials in Eq. (2).
Secondly, it is essential that the expansion converges
within a small-order of expansion (i.e. P ≤ 5) for com-
putational efficiency. These two aspects are addressed in
the next two sections. Complete energy surface for small
isolated clusters is created by mathematically defining
the configurational space of clusters, tessellation of the
space, computation of cluster energies on nodal points,
followed by interpolation of cluster energies as described
in the next section. Computational efficiency is improved
through the use of weighted multi-body expansions as ex-
plained in section C. Efficiency can be further improved
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by performing computations in parallel by distributing
the M atoms involved in the loop index m1 in Eq. (1) to
different processors.

B. Construction of cluster energy surfaces

The basic idea of the approach to rapidly compute
multi-body expansions of arbitrary systems is to build
an interpolation function for the isolated cluster ener-
gies E∗ from the pre-computed database. Given a set
of n m-atom clusters represented as Θ = {ξi

d}
n
i=1 in the

d-dimensional configurational space, we try to build a
smooth function that maps clusters to ab-initio energies,
f : R

d → R. In particular, we use an interpolant If such
that If(ξi

d) = f(ξi
d), ∀ i = 1, . . . , n.

The first step in this procedure will be to define the
d-dimensional configurational space of an m-atom clus-
ter. The positions of the atoms in the cluster are rep-
resented by the distance between atoms, Rij > 0. For
two-atom clusters (m = 2), the configurational space
is one-dimensional, with each point x in the space rep-
resenting a two-atom cluster with inter-atomic distance
of R12 = x. As the number of atoms, m, in the clus-
ter increases, the number of distances, Rij necessary to
completely and uniquely describe the cluster increases
rapidly. Up to m ≤ 4, clusters are uniquely represented
by 1

2m(m − 1) independent variables.
For example, the space of all possible three-atom clus-

ters is three-dimensional as shown in Fig. 2(a). This
space is a convex hull with 9 planes (symmetries not in-
cluded) due to a linear set of constraints arising from
three triangle inequalities of the form Rij + Rjk ≥ Rik

that constrain the location of atoms in the three-atom
cluster and the upper and lower cutoff used for possible
cluster sizes in the database: Rij > l and Rij < u with
i, j, k = 1 . . . 3. Cluster symmetries can be used to further
reduce the space and consequently, reduce the number of
energy calculations required. Figure 2(b) shows the re-
duced space accounting for symmetries (R12 ≤ R23 ≤
R13) in the case where all 3 atoms are of the same type.
Also shown in Fig. 2(a) is the tessellation of the config-
urational space of clusters. The energy of a cluster cor-
responding to each nodal point in the space is calculated
and stored in the database. The plot of energy versus in-
teratomic distance for a two-atom Pt cluster is shown in
Fig. 3 with location of nodal points for two-atom clusters.
Higher-dimensional spaces are adaptively tessellated as
shown in Fig. 2(a) with a finer discretization of regions in-
volving small clusters. The tessellation of the configura-
tional space is carried out using n-dimensional Delaunay
triangulation, as implemented in the qhull22 program.
Tessellation generates elements (known as a simplex) over
which local linear interpolation is carried out to find the
energy of any other three-atom cluster within the space.
The discretization and interpolation techniques are, in
essence, same as those used in the popular finite element
techniques for PDEs. Energy (E) of an arbitrary cluster

4
6

8
10

4

6

8

10

4

6

8

10

R
13

  (
bo

hr
)

R12  (bohr)
4

6
8

10 4
6

8
10

3

4

5

6

7

8

9

10

11

R23  (bohr)

R
13

  (
bo

hr
)

1
2

3

R12  (bohr)
R23  (bohr)

FIG. 2: (left) shows the space of all possible three-atom clus-
ters within an upper and lower cutoff cluster size. This space
represents a convex hull in 3D. (right) Use of symmetries (in
the case where all three atoms are of one type, e.g. Pt-Pt-Pt
clusters) can further reduce the space. The simplices used to
perform local linear interpolation of energies are also shown.
In 3D, the simplex is a tetrahedron.

4 6 8 10 12 14

-104

-102

-100

-98

-96

-94

Interatomic distance (bohr)
E

ne
rg

y 
(R

yd
)

Upper cut-off 

FIG. 3: The plot of energy versus interatomic distance for a
two-atom Pt cluster. The location of nodal points in this one-
dimensional configurational space and the upper cutoff used
for calculations are indicated.

with cluster specifier ξ
∗

d = [ξ∗1 , ξ∗2 , . . . , ξ∗d ] in a tessellated
d-dimensional configurational space is given as:

E = αT Ee, (4)

where Ee is the vector containing energies at the nodes
of the simplex within which ξ∗

d is located. α is ob-
tained as α = A−1b, where A = [1, ξe

1, ξ
e
2, . . . , ξ

e
d]

T and
b = [1, ξ∗1 , ξ∗2 , . . . , ξ∗d ]T . Here, ξe

i denotes a vector contain-
ing the ith coordinate value of all nodes in an element
e. The element e is located by calculating α for every
element in sequence and selecting the element e where
all elements of α > 0. This step becomes more time-
consuming as the dimensionality of configurational space
(hence, the number of elements) increases. Further, the
geometry of the configurational space becomes more com-
plex as the dimensionality of the configurational space
increases. For example, the configurational space of a
fourth-order cluster (excluding symmetries) involves 24
linear constraints and a quartic constraint.

The number of independent variables specifying a m >

4 atom cluster is given by d = 3m−6 although 1
2m(m−1)

variables are needed to uniquely define a cluster23. An
example of how cluster specifiers are determined for a
5-atom cluster is illustrated in Fig. 4. In this example,
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FIG. 4: In the case of a five-atom cluster, the locations of
the fourth and fifth atoms can be fixed with respect to the
plane formed by atoms 1 − 2 − 3 using the cluster specifiers
[R12, R23, R13, R14, R24, R34, R15, R25, R35]. However, these
specifiers do not completely represent the cluster. The de-
pendent variable in this case is R45 which can take one of
possible two values based on the location of atom 5 either
above or below the plane formed by atoms 1 − 2 − 3.

there are 9 independent variables and 1 dependent vari-
able (R45) that can take one of two values based on the
location of the fifth atom. Thus, m > 4 cases present
special difficulties associated with dependent variables.
We address this issue by creating different configuration
spaces corresponding to the values that each dependent
variable takes. For the case of a 5-atom cluster, this
means that two potentials need to be created, one for the
case where atom 5 is above the plane formed by atoms
1 − 2 − 3 and another when it is below that plane.

For a binary AB system, all possible cluster con-
figurational spaces are created for a given clus-
ter size, e.g. for L-atom clusters, L + 1 energy
databases (e.g. for L = 2, 3 databases containing
E∗(XA, XA), E∗(XA, XB), E∗(XB, XB)) need to be gen-
erated. The upper and lower cutoff were selected by
carefully analyzing the energies of two-atom clusters over
a large range of R12 to locate an upper cut-off beyond
which the interaction between atoms were not significant
and a lower cutoff where the interaction energy is posi-
tive.

For Platinum with lattice parameter of a = 7.5 bohr,
the lower cutoff of atom spacing in a cluster within the
database was fixed as Rij > 0.3a and upper cutoff was
fixed as Rij < 1.5a. The plot of energy versus inter-
atomic distance for a two-atom Pt cluster, from which
the cut-offs were identified, is shown in Fig. 3. The cut-
offs signify that clusters with Rij < 0.3a and Rij > 1.5a

are not available in the database. During MBE calcu-
lations, energies of clusters containing such interatomic
distances are approximated using the following means.
For Rij < 0.3a, cluster energies were given an artificial
high value to signify that such configurations are not en-
ergetically feasible. For N -atom clusters with Rij > 1.5a,
the excess energy attributed to N-body interactions is as-
sumed to be zero (i.e. V (N) ≈ 0, for N -atom clusters with
an Rij > 1.5a). This is mathematically equivalent to ap-
proximating the energies of large clusters using energies
of smaller sub-clusters. For example, Fig. 5(a) shows the
energy surface of three-atom Platinum clusters up to an
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FIG. 5: Energy surface (E∗(X1, X2, X3)) for 3-atom Pt clus-
ters whose atoms are positioned at the vertices of a right an-
gled triangle with line joining atoms X2 and X3 forming the
hypotenuse. Figure (a) shows computed Platinum three-atom
cluster energies, while (b) shows extension of energies beyond
the cutoff using energies of smaller clusters (E∗(Xi, Xj) and
E∗(Xi)).

upper cutoff size of 1.5a and Fig. 5(b) shows the complete
energy surface when the energies beyond the upper cutoff
are approximated using two- and one-atom energies.

C. Weighted multi-body expansion

Multi-body expansion has been shown to work very
well for rare-gases where the expansion is dominated by
pair interactions making higher terms in the expansion
negligible. Total energy of metallic systems, however,
has significant contributions from higher-order interac-
tions and the expansion has non-smooth convergence be-
havior 18. Figure 6 shows the behavior of multi-body
expansion for an eight atom (2 unit cell) FCC Platinum
cluster that requires at least a 7th order expansion to
capture the true energy. It is observed here that ener-
gies computed by including successively higher-orders of
interaction, in fact, oscillate around the true energy. An
ad-hoc numerical approach for estimating the true ener-
gies for the case in Fig. 6 will be to appropriately weight
the energies obtained at different orders of multi-body
expansion, which is akin to smoothing (or filtering) the
energy oscillations in Fig. 6. Numerical experiments pre-
sented in the next section indicate that weighted MBE
(wMBE) calculations lead to dramatic improvement to
the convergence behavior of the multi-body expansion.
In the wMBE approach, the energies up to a cut-off or-
der of expansion P are weighted so that we reach as close
to the true energy (EM ) of an M -atom system as follows:

EM (X1, X2, . . . , XM ) = α1E1(X1, X2, . . . , XM )

+ α2E2(X1, . . . , XM ) + . . . + αP EP (X1, . . . , XM ).(5)

The coefficients α = [α1, α2, . . . , αP ]T are computed
by solving the equation:

α = C+E, (6)

where, E are the true energies of q M -atom clusters
(Xi, i = 1, . . . , q) computed with self-consistent DFT
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calculations. Each row of C contains the energies
[E1, E2, . . . , EP ](i) obtained from multi-body expansion

of each of these clusters (where Ep
(i) = Ep(X

i)). C+ is
the pseudo-inverse of matrix C. The technique to obtain
coefficients α is thus, similar to the method of Connolly
and Williams1 used for cluster expansions. In their tech-
nique, truncation of the expansion is based on which clus-
ters are important, for example, in FCC crystals where
only clusters containing nearest neighbors are important,
the series is truncated at fourth-order. In the case of the
wMBE, however, the cutoff of the order of interactions
needs to be identified through numerical experiments as
will be demonstrated in the next section.

N-body expansion energies (En)

True energy of the system
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FIG. 6: Convergence of the many-body energy expansion of
an eight-atom FCC Platinum cluster requires at least a 7th

order expansion to reasonably capture the true energy.

Before proceeding to examples, we summarize the steps
involved in the overall algorithm as follows:

1. Offline calculations (steps 1-4): Constructing a
database.
Generate coordinates ({ξi

d}
n
i=1) for sampling the

configurational space of all cluster sizes involved.
For example, each three-atom cluster (1-2-3) cor-
responds to the coordinate ξi

3 = (R12, R23, R13) in
the configurational space where e.g. R12 is the in-
teratomic distance between atoms 1 and 2. During
this step, various constraints based on geometry or
symmetry are used to reduce the number of nodes
in the configurational space.

2. For an L−atom cluster of a binary system, coordi-
nates for L + 1 configurational spaces need to be
created during step 1. Each configurational space
corresponds to a different atom type list, e.g. for
L = 2 atom clusters of a binary alloy A−B, config-
urational spaces for clusters of types A−A, A −B
and B − B need to be generated.

3. Perform tessellation of coordinates in all config-
urational spaces and store nodal coordinates and
element-node lists in the database.

4. Generate input files and perform self-consistent
DFT calculations to compute energies (E∗(ξi

d)) at

nodal locations of all configurational spaces. Ener-
gies from the DFT calculation are read and stored
in databases, one corresponding to each configura-
tional space.

5. Calculation of MBE coefficients.
Compute self-consistent ab-initio calculations to
compute energies (to obtain E in Eq. (6)) of a few
(three or four) different N -atom configurations.

6. Compute energies using MBE with increasing or-
ders of expansion and obtain [E1, E2, . . . , EP ](i) for
each N -atom configuration used in step 5. During
multi-body expansion, potentials (V (N)) are cre-
ated using Eq. (2) on the fly, using cluster energies
E∗ obtained by interpolating from the database
constructed in steps (1-4). The steps involved to
compute cluster energy, E∗, of an arbitrary cluster
are:
(a) Locate the cluster in the corresponding config-
urational space. For example, a three-atom cluster
of type A − A − B, is located at the coordinate
ξ3
i = (R12, R23, R13) in the three dimensional con-

figurational space of A − A − B type.
(b) Identify the element in which the cluster is lo-
cated and perform linear interpolation using known
energies at nodal values in that element using
Eq. (4).
(c) Energies of clusters that are not available in
the database are approximated using the methods
detailed at the end of Section B.

7. Compute the coefficients α of weighted MBE using
Eq. (6). Perform tests for convergence by compar-
ing energies predicted by wMBE with ab-initio cal-
culation for few other configurations of N -atoms.

8. MBE calculations for arbitrary N -atom configura-
tions.
The converged weighted expansion can be now be
employed for computing energies of other N -atom
systems using Eq. (5) and Eq. (1). During calcu-
lations, cluster energies E∗ are again interpolated
from the database as in step 6.

D. Results for metallic systems

1. Extrapolatory performance of wMBE approach: In
the first test case, energies predicted by multi-body ex-
pansion are compared with true energies obtained using
the embedded atom potential of Sutton and Chen24 for
Platinum atom clusters. Convergence of the expansion is
tested using exact cluster energies (without performing
interpolation). Atom configurations used in these cases
correspond to nx × ny × nz clusters with ni unit cells
located in the ith direction.

Figure 7 shows the energies obtained for an isolated
4 × 1 × 1 (16-atom) cluster of Platinum computed using
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FIG. 7: Comparison of true energies of a 4× 1× 1 (16-atom)
FCC Platinum cluster with that predicted by multi-body ex-
pansion. Weights in the multi-body expansion were computed
using 3 energies at lattice parameters of 7.2, 7.4 and 7.6 bohr.
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FIG. 8: Comparison of true energies of a 4× 1× 1 (16-atom)
FCC Platinum cluster with MBE expansion results for an
extrapolatory case of a FCC lattice where the face centered
atom in the x− y plane and y − z plane in the FCC basis are
translated by (−0.1,−0.1, 0) and (0, 0.1, 0.1), respectively in
crystal coordinates.

2nd, 3rd and 4th order wMBE and the true energies. In
all cases, the parameters α were computed using 4×1×1
Pt clusters using just 3 energies at lattice parameters of
7.2, 7.4 and 7.6 bohr as indicated in Fig. 7. Energies in-
crease linearly within this range of lattice parameters. In
spite of this, predicted energies from the 3rd and 4th or-
der multi-body expansions exactly capture the parabolic
nature of the true energy profile. As a test of the ex-
trapolatory performance of wMBE, we perturb the face
centered atoms in the x − y plane and y − z plane of
the FCC basis by (−0.1,−0.1, 0) and (0, 0.1, 0.1), respec-
tively in crystal coordinates. In spite of the large changes
in energy resulting from this perturbation, the expansion
built previously for a FCC cluster is able to reproduce the
energy profile of this distorted cluster accurately (Fig. 8).

2. Convergence of wMBE in extrapolatory cases: Fig-
ure 9 shows the energies predicted at various lattice pa-
rameters using 2nd and 3rd order wMBE for an isolated
2× 2× 1 FCC Platinum cluster. In this case, the param-
eters α were originally computed using 2 × 2 × 1 FCC
clusters of Pt using 11 lattice parameters between 6 bohr
to 8 bohr in the increments of 0.2 bohr. Although Fig. 9
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FIG. 9: Comparison of true energies obtained for a 2 × 2 ×

1 (16-atom) FCC Platinum cluster with energies computed
using 2nd and 3rd order wMBE.

shows that the third-order expansion is adequate to cap-
ture the true energy profile, use of higher-orders of ex-
pansion improve the performance in extrapolatory cases.
Figure 10 depicts the performance of 3rd, 4th and 5th or-
der MBE in an extrapolatory case where the face centered
atom in the x−y plane of the FCC basis is translated by
(−0.1,−0.1, 0) in crystal coordinates. Figure 11 shows
the decrease in the l2 norm error in energies predicted
with increasing order of multi-body expansion. Several
other numerical experiments of this kind indicate that the
wMBE approach captures the energy profile for any ran-
dom configurations of N -atom Pt clusters, and thus, has
potential applications in NVE or NVT atomistic simula-
tions. The weighting procedure aims to average out the
extraneous energy contributions (eg. surface energies)
arising due to lack of environment in isolated clusters.
The limitation in the procedure is that a change in num-
ber of atoms (N) simulated necessitates re-calibration of
MBE coefficients. Figure 9 shows the energy variation
with lattice parameter obtained from an MBE expan-
sion calculated using cluster energies interpolated from
a database. For interpolation, the second-order configu-
rational space is discretized into 20 linear elements (21
nodes) and the third-order configurational space (includ-
ing symmetries) was approximated using 16374 tetrahe-
dral elements on which energies were calculated at 3191
nodal locations. Although discretization and linear in-
terpolation introduce errors in calculation of energies, it
is seen that the technique still reasonably captures the
energy profile and the energy minima. The advantage
of interpolation approach is that it is order of magni-
tude faster since cluster energies are computed before-
hand and are directly sampled from the database during
simulations.

3. wMBE using interpolated energies from ab-initio
calculations : Figure 12 shows structure optimization
to find the lattice constants for FCC Platinum system
using interpolated energies of clusters computed from
first principles DFT calculations. Since MBE inher-
ently uses non-periodic configurations, energies of peri-
odic structures are computed by considering supercells
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FIG. 10: Comparison of true energies obtained for a 2 × 2 ×
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FIG. 11: Decrease in the l2 norm error in energies with in-
creasing order of multi-body expansion for the extrapolatory
case in Fig. 10.

with true energies E used for fitting Eq. (5) obtained
from self-consistent DFT calculations of a periodic unit
cell. In this example, a 5 × 5 × 5 (500-atom) FCC
cluster is considered. The variation of cohesive energy
(Ec(X1, .., Xm) = E∗(X1, .., Xm) −

∑m

i=1 E∗(Xi)) of 3-
atom clusters with interatomic distances (R12, R23, R13)
is shown on the configurational space (accounting for
symmetry) in Fig. 12. The configurational space is dis-
cretized into 4609 tetrahedral elements on which linear
interpolation is carried out. Ab-initio energy data were
computed on 1027 nodal locations. Figure 13 shows com-
parison of the energies computed using 3rd and 4th order
wMBE with the true energies. Coefficients in the multi-
body expansion were generated using three ab-initio en-
ergy calculations of a periodic FCC Platinum lattice with
lattice parameters of 6.5, 8.5 and 9.0 bohr. It is seen from
Fig. 13 that the energy profile is well captured using the
technique within expected error bounds as discussed later
in this section. The significant advantage of using inter-
polated energies is that it does not utilize any signifi-
cant computational resource. This is due to the fact that
all heavy ab-initio calculations are performed beforehand
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E∗(Xi)) computed from ab-initio sim-

ulations.
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FIG. 13: Comparison of variation of energies with lattice pa-
rameter for a periodic FCC Pt lattice with wMBE calculations
involving cluster energy interpolation.

and the data is stored for interpolation.
4. Analysis of accuracy of wMBE with interpolated ab-

initio energies
The main sources of error in the wMBE procedure

are the errors involved in the interpolation of energies
from the database, fitting weighting coefficients and con-
vergence accuracy for the ab-initio energy data. The
maximum interpolation error over any element (includ-
ing higher dimensional elements) is tightly bounded by
ctr

2
mc, where the absolute curvature of the true ab-initio

energy surface is bounded in each element t by a con-
stant 2ct and rmc is the minimum containment radius of
an element. For the 2-atom Pt cluster energy surface,
the maximum interpolation error was 0.03 mRyd. Al-
though this error cannot be completely eliminated, we
use smaller element sizes in the regions where large en-
ergy variations are expected in order to reduce the inter-
polation error for larger clusters. The convergence accu-
racy of self-consistent DFT calculations of small clusters
was within 0.01 mRyd in all cases. In order to study the
error in fitting MBE weights, we carried out a leave-one-
out cross-validation (CV) procedure. Here, the error in
reproduction of energies is studied by fitting the energy
with N −1 clusters and computing the error in reproduc-
tion of energy of the left-out cluster (Ei). The process is



8

repeated with every single cluster used once as a left-out
cluster. The CV error is computed as the mean error
1
N

∑N
1 |Etrue − Ei|. Compared to statistical estimates

such as variance, CV error provides a more reliable esti-
mate of future performance of wMBE when energies of
new clusters need to be predicted.

Ab-initio energies of N = 300 randomly generated 24-
atom Pt clusters were used for testing the accuracy of the
wMBE procedure. The 24 atoms were randomly placed
at grid points spaced 7 bohr apart in each direction over a
cube of 105 bohr length and ab-initio energies (E) for use
in Eq. (6) are computed. The mean CV error for third-
order MBE was found to be 0.381 Ryd (15.9 mRyd per
atom). The mean CV error during cross validation for
fourth-order expansion reduces to 0.121 Ryd (5.04 mRyd
per atom). The average cohesive energy per atom for the
complete data set was 312.4 mRyd. This demonstrates
convergence towards ab-initio energies, although the er-
ror may still be significant for modeling phenomena such
as phase transformations where accuracy in the order of
mRyd may be required.

5. Convergence of wMBE for a binary system (α-
alumina Al2O3): A multi-body expansion is constructed
for α-Alumina (Al2O3) system using cluster energies
computed using the Streitz-Mintmire (SM) model25.
Streitz-Mintmire potential is a many-body functional
that merges electrostatic potential with an embedded-
atom potential to describe metal-oxide energies. α-
Alumina (Al2O3) has a rhombohedral primitive unit cell
and is described in space group R3̄c (no.167) with two
lattice parameters a, b. The lattice parameter a is varied
while b is fixed at 0.4856 bohr. Figure 14 plots the varia-
tion of energies, computed using wMBE, as a function of
lattice parameter a for a 2× 2 × 1 cluster of α-Alumina.
The true energies as computed by the SM model at each
lattice parameter are also shown. Four energies at lat-
tice parameters a = 7.0, 7.2, 7.4 and 7.6 bohr were used
to compute the MBE coefficients. Within this range of
lattice parameters, energies increase linearly as indicated
in Fig. 14. In spite of this, a fourth-order expansion is
able to represent the curvature of the α-Alumina energy
profile predicted by the Streitz-Mintmire (SM) model. In
contrast to the FCC Pt case in Fig. 7, predicted energies
from the 3rd order multi-body expansion is not able to
predict the energy minima, while the fourth-order pre-
dicts the lattice parameter a = 6.6 bohr accurately. In-
stead of the SM model, ab-initio calculations of isolated
cluster energies (E∗) could have been used. Since we
compute energies of isolated clusters by approximating
a periodic lattice, care must be taken to avoid the in-
fluence of lattice Coulomb potential on the ionic Al-O
cluster (due to finite size effects) by using a large enough
unit cell. DFT calculations were avoided in this example
due to the computational complexity of handling a large
number of plane waves because of the sharply peaked va-
lence states in oxygen and requirement of a large unit
cell. wMBE of a binary metallic system that uses ab-
initio calculations is reported in the next example.
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FIG. 14: Comparison of variation of energies with lattice pa-
rameter for a 2 × 2 × 1 supercell of α-alumina (space group
R3̄c) using 3rd and 4th order wMBE. The true energies and
the energies used for computing MBE coefficients are indi-
cated.

6. wMBE of a binary (Au-Cu) system using inter-
polated ab-initio energies: This example demonstrates
structure optimization to find the lattice constants for
FCC CuAu3 system (space group Pm3̄m, no. 221) us-
ing interpolated energies of clusters computed from first
principles DFT calculations. As in the case of FCC Pt,
the energies E used for fitting Eq. (5) are obtained from
self-consistent DFT calculations of a periodic unit cell. A
6×6×6 (864-atom) FCC cluster is considered to approx-
imate the periodic lattice, and MBE expansion is con-
structed using energies interpolated from the tessellated
configurational space. As an example, the cohesive en-
ergy (Ec) variation with cluster specifiers (R12, R23, R13)
in the configurational space for 3-atom Cu − Cu − Au
and Cu − Au − Au clusters is shown in Fig. 15(a) and
(b), respectively. Apart from the 9 constraints discussed
in section B, the inequalities R23 < R13 and R12 < R13,
respectively, are additionally used to account for cluster
symmetries in the space shown in Fig. 15(a) and (b).
The lower and upper cutoffs used for constructing these
spaces were 2.19 bohr and 10.95 bohr, respectively. For
single atom-type clusters of copper or gold, the upper and
lower cutoffs were fixed at 0.3 and 1.5 times the lattice
parameters of pure FCC Cu and Au lattices.

Figure 16 shows comparison of the energies computed
using 3rd and 4th order wMBE with the true energies.
Coefficients in the multi-body expansion were generated
using three ab-initio energy calculations of a periodic
FCC CuAu3 lattice with lattice parameters of 8.6,
8.7 and 8.8 bohr. Similar to the Al2O3 case, the 3rd

order multi-body expansion is not able to capture the
energy profile of FCC CuAu3 whereas a fourth-order
expansion provides a reasonable approximation of the
energy profile. wMBE approach allows computation of
the energy of large systems with accuracy subject to the
errors discussed previously. Cross-validation accuracy
for this system using a similar procedure as described
before was also carried out. We employed 300 random
clusters of 24-atom CuAu3 clusters for testing the
accuracy of the wMBE procedure. The 24 atoms were
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different underlying symmetries.
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FIG. 16: Comparison of variation of energies with lattice pa-
rameter for a periodic FCC CuAu3 lattice with wMBE cal-
culations involving cluster energy interpolation.

randomly placed at grid points spaced 7.5 bohr apart in
each direction over a cube of 112.5 bohr length. A cross
validation error of 0.187 Ryd (7.8 mRyd per atom) was
achieved when a fourth-order expansion was used. The
average cohesive energy per atom for the complete data
set was 207.1 mRyd. This error may be significant for
modeling phenomena such as phase transformations, but
wMBE is a good replacement for empirical potentials
in several other multiscale modeling applications where
reasonable accuracy is required. Although use of higher
(5+) body interactions is expected to improve the fit, it
greatly increases computational overhead in tessellation
and data generation. We are currently working on the
use of data-adaptive hierarchical interpolation to address
this issue.

E. Conclusions

Developments presented here advance the existing
state of the art in multi-body expansion technique for
representation of energies of alloy systems through the
following new contributions:

• The convergence characteristics of multi-body ex-

pansions (MBE) were improved by weighting ener-
gies obtained from various orders of atom interac-
tions in a new method called weighted multi-body
expansion (wMBE).

• In contrast to methods such as cluster expan-
sion that involve the ordering degrees of freedom,
wMBE focuses on the positional degrees of free-
dom. This allows one to explicitly model structural
relaxations.

• Database interpolation techniques are demon-
strated for accelerating computation of energies us-
ing multi-body expansions. For the first time in
literature, multi-body expansions were computed
directly from ab-initio energies of small clusters
to model energies of Platinum and a binary al-
loy (Au-Cu) system. The quality of the expansion
was quantified using leave-one-out cross-validation
technique.

• The technique involves considerably lesser compu-
tational cost, with no requirement of periodicity,
and hence, could be used to perform more accu-
rate NVE or NVT molecular simulations of metallic
clusters and complex phase structures compared to
other commonly used position-dependent potential
approximations. We are currently working on data-
adaptive hierarchical interpolation which would al-
low us to build higher (5+) order potentials that
would lead to improved accuracy.

APPENDIX A: AB-INITIO CALCULATIONS

Ab initio electronic-structure calculations were car-
ried out using density functional theory in the local
density approximation, as implemented in the PWscf
package, using Perdew-Zunger parameterization of the
exchange correlation energy and Rabe–Rappe–Kaxiras–
Joannopoulos26 (ultrasoft) pseudopotential. Kohn-Sham
orbitals were expanded in a plane wave basis up to an
energy cutoff calculated to ensure convergence. Brillouin
zone integrations were carried out using single k-point
calculation and Methfessel-Paxton first-order spread-
ing27. The cell size is taken to be sufficiently large to
effectively simulate an isolated cluster. For Platinum,
the energy cutoff was 244.8 eV, the cell size was taken as
four times the maximum size of the cluster.

ACKNOWLEDGMENTS

The authors acknowledge the support of the Materials
Science Division of the Army Research Office and of the
Computational Mathematics Program of the Air Force
Office of Scientific Research.



10

∗ Electronic address: njz1@cornell.edu
1 J.W.D. Connolly and A.R. Williams, Phys. Rev. B 27,

5169–5172 (1983).
2 J.M. Sanchez, F. Ducastelle and D. Gratias, Physica A

128, 334–350 (1984).
3 A. Zunger, NATO Advanced Study Institute on Statics and

Dynamics of Alloy Phase Transformations (ed. P. Turchi
and A. Gonis), New York: Plenum, 1994.

4 D. de Fontaine, in Solid State Physics, edited by H. Ehren-
reich and D. Turnbull, Academic Press, New York, 1994,
Vol. 47, p. 33.

5 Z.W. Lu, S.H. Wei, A. Zunger, S. Frota-Pessoa and L.G.
Ferreira, Phys. Rev. B 44, 512–544 (1991).

6 H.Y. Geng, M.H.F. Sluiter and N.X. Chen, Phys. Rev. B
73, 012202(1–4) (2006).

7 A. van de Walle and G. Ceder, J. of Phase Equil. 23(4),
348-359 (2002).

8 C.C. Fischer, K.J. Tibbetts, D. Morgan and G. Ceder, Na-
ture materials 5, 641-646 (2006).

9 S. Curtarolo, D. Morgan, K. Persson, J. Rodgers and G.
Ceder, Phys. Rev. Let. 91, 135503 (1-4) (2003).

10 A.E. Carlsson, Solid State Physics (vol. 43) (edts. H Ehren-
reich and D Turnbull), Boston, MA: Academic (1990).

11 R. P. Gupta, Phys. Rev. B 23, 6265–6270 (1981).
12 Y. Li, E. Blaisten-Barojas and D.A. Papaconstantopoulos,

Phys. Rev. B 57, 15519–15532 (1998).
13 J.N. Murrell and R.E. Mottram, Mol. Phys. 69, 571–585

(1990).

14 J.-Y. Fang, R. L. Johnston and J. N. Murrell, Mol. Phys.
78(6), 1405–1422 (1993).

15 H. Cox, R.L. Johnston and J.M. Murrell, J. Solid Stat.
Chem. 145(2), 517–540 (1999).

16 R. Drautz, M. Fahnle and J.M. Sanchez, J. Phys.: Con-
dens. Matter 16, 3843–3852 (2004).

17 M. Fahnle, R. Drautz, F. Lechermann, R. Singer, A. Diaz-
Ortiz and H. Dosch, Phys. Status Solidi B 242, 1159–1173
(2005).

18 B. Paulus, K. Rosciszewski, N. Gaston, P. Schwerdtfeger
and H. Stoll, Phys. Rev. B 70, 165106–165115 (2004).

19 N.X. Chen, Phys. Rev. Lett. 64, 1193–1195 (1990).
20 N.X. Chen and G.B. Ren, Phys. Rev. B 45, 8177–8180

(1992).
21 B. Paulus, Physics Reports 428, 1–52 (2006).
22 Qhull program (http://www.qhull.org/).
23 J.W. Martin, J Phys C. Solid state Phys. 8, 2837–2857

(1975).
24 A.P. Sutton and J. Chen, Philos. Mag. Lett. 61(3), 139–

146 (1990).
25 F.H. Streitz and J.W. Mintmire, Phys. Rev. B 50, 11996–

12003(1994).
26 A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopou-

los, Phys. Rev. B 41, 1227–1230 (1990).
27 M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616–

3621 (1989).



Towards the construction of fully transferable

multi-atom potentials

Ilias Bilionisa,b, Nicholas Zabarasa,b

aMaterial Process Design and Control Laboratory, Sibley School of Mechanical and

Aerospace Engineering, 101 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY

14853-3801, USA
bCenter for Applied Mathematics 657 Frank H.T. Rhodes Hall Cornell University Ithaca,

NY 14853, USA

Abstract

A Bayesian scheme to fit Potential Energy Surface of clusters of N atoms is
proposed using a permutationally invariant polynomial basis. The evidence
approximation is employed to fit the missing prior parameters and identify
the length scale. Distance geometry techniques are introduced to efficiently
sample the configuration space. The Bayesian variance is used to quantify
the informational content of each point in the configuration space leading to
an efficient adaptive scheme that minimizes the required number of expensive
ab initio calculations. Objective stopping criteria are provided.

Keywords: PES interpolation, model selection, invariant polynomial basis

1. Introduction

The potential energy surface (PES) plays a central role in the computa-
tional simulation of all types of atomic interactions of interest. Once the PES
is constructed, Molecular Dynamics (MD) or Monte Carlo (MC) methods can
be employed to investigate the system’s dynamical behavior. Of course, the
accuracy of such simulations depends crucially on the accuracy of the PES
used. The ideal PES is the so-called Born-Oppenheimer PES obtained by
solving the Schrödinger equation using the adiabatic approximation [1]. Di-
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rectly using the ab initio PES in simulation is computationally infeasible for
all but extremely simple systems.

As the number of atoms in the system increases, simple functional forms
based on physical models are a necessary choice. Their parameters are fitted
using a small set of experimental data: bond energies, bond distances and
angles, elastic moduli, vibrational frequencies etc. Such PES give qualitative
descriptions of the system and their applicability depends closely on what
range of experimental data was used to fit their parameters, i.e. they are not
transferable.

Recently it has become possible to obtain the PES directly from ab ini-
tio calculations for relatively small and not too complex systems. The basic
problems addressed in the literature consist of 1) determining the important
areas of the configuration space, 2) finding the minimum number of the con-
figuration space points required to obtain an accurate PES and 3) fitting
the electronic energies to an analytic model. The first problem is usually ad-
dressed by employing classical trajectories whose initial points are selected to
match the distribution of these variables under the conditions of the experi-
ments being investigated [2]. Ab initio calculations are performed on a set of
system configurations along these trajectories. Alternatively, an approximate
empirical PES can be used to initiate the trajectory sampling of the config-
uration space [3]. The second problem, testing the convergence of the PES,
is performed by computing various dynamical properties of the system and
examining their invariancy with respect to the database size [4]. Finally sev-
eral methods have been proposed to accurately fit ab initio databases. Many
methods assume parametrized analytical forms for the surface. Such are the
many-body expansion method [5] and the recently successful multinomial ex-
pansion method [6, 7, 8]. Other, basis free, methods are a) moving Shepard
interpolation techniques [4, 9, 10, 11, 12, 13], b) reproducing kernel Hilbert
spaces [14], c) interpolating moving least squares [15, 16, 17, 18, 19, 20, 21]
and d) Neural Networks methods [22, 23, 24, 25].

Despite the appeal and usefulness of the above mentioned techniques
they all suffer from the curse of dimensionality: it is practically impossible
to construct a PES for a multi-atom system. To overcome this barrier we
employ the Multi-Body Expansion (MBE) technique [26]. MBE provides a
systematic framework in which the total energy of a multi-atom system is
represented as a summation over potentials of isolated clusters, with series
terms involving pair, three-body, four-body,. . . , N -body potentials. This re-
sults in structure independent, fully-transferable many-body potentials [27].
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The N -body potentials can be constructed using the Möbius transformation
from the K-body PES, where K = 1, 2, . . . , N . However, building the N -
body potentials is not an easy problem: 1) The order of the expansion is a
priori unknown and although it is small for rare-gases, it is of relatively high
order in metals [28]. 2) The accuracy of the N -body potential depends in a
complicated manner on the accuracy of the K-body PES for K = 1, . . . , N .
Both these problems pose daunting restrictions on the applicability of the
method since they require a very accurate PES fitting scheme that utilizes
as little as possible electronic structure calculations. Furthermore, for the
constructed potentials to be of any use, the analytical form of the PES needs
to be able to capture a wide range of the configuration space. Consequently,
there have been no published reports of a multibody expansion constructed
explicitly from first-principle calculations. The main goal of this work is to
address exactly these issues.

To this end, we propose a Bayesian variant of the multinomial expansion
method for the construction of the K-body PES. The multinomial expan-
sion method provides an analytical functional form for the PES satisfying
permutation invariance with respect to like atoms. Most schemes can ac-
count for permutation invariance only by explicitly replicating all possible
permutations of each data point. As a result, permutation invariance of
like atoms is learned from the data despite the fact that it constitutes a
well-known property of any PES - a well-established prior knowledge. The
accuracy of the fitting procedure is further enhanced by introducing a Lin-
ear Bayesian Regression scheme and the evidence approximation to optimize
the scale parameter of the Morse-variables. This avoids overfitting and in-
creases the predictive capabilities of the PES. An additional benefit of the
Bayesian framework is that it provides us with a way to quantify the in-
formational content of each point of the configuration space. Our lack of
knowledge about the energy value of a particular point of the configuration
space is associated with the variance of the Bayesian prediction. This in-
formation is then used to adaptively select new data points to be included
into the fitting procedure until objective stopping criteria are met. Distance
Geometry techniques ([29, 30, 31]) are introduced to facilitate the sampling
of the configuration space. In our numerical examples, we demonstrate that
this improved multinomial expansion greatly increases the accuracy of the
obtained PES and reduces the number of required electronic calculations.

In Section 2.1 we introduce the distance matrix as our variables of choice
to describe the configuration space and we discuss why it is necessary to
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map them to the Morse variables. In Section 2.2 we discuss the multino-
mial expansion method and give a simple illustration on how the Monomial
Symmetrization Approach (MSA) [8] can be used to construct a basis of
permutationally invariant polynomials. In Section 2.3 we mathematically
define the configuration space as the set of distance matrices satisfying cer-
tain bounds and introduce Distance Geometry techniques that allow us to
sample from it. Section 2.4 describes the Linear Bayesian Regression scheme
and Section 2.5 employs the evidence approximation in order to select all
the missing parameters of the model. In Section 2.6 we propose objective
measures to test the goodness of fit, and in Section 2.7 we show how one
can use the Bayesian variance to adaptively select new configuration points.
Finally in Section 2.8 we introduce the MBE methodology and show how our
framework can be applied to the construction of the N -body potentials from
the K-body PES.

2. Methodology

Consider a cluster of N atoms not necessarily of the same type. Atom
i can be described by its cartesian coordinates ri ∈ R and its type σi. In
order to simplify the notation we will refer only to the cartesian coordinates
R = (r1, . . . , rN) but keeping always in mind that these are associated with
particular atomic types.

2.1. Choice of variables

We choose to describe the configuration space in terms of interatomic
distances. This is not the optimal choice since we use 1

2
N(N − 1) variables

instead of the 3N−6 independent degrees of freedom 1. However, interatomic
distances provide a nice way to sample the configuration space using Distance
Geometry techniques (see Section 2.3) and guarantee translation and rotation
invariance.

Let dij be the distance between atoms i and j, i.e.

dij = |ri − rj |2, (1)

where | · |2 is the Euclidean norm of R
3. The symmetric matrix

D = (dij), (2)

13N − 6 = 3N − 3 translations− 3 rotations
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is called the distance matrix corresponding to the Cartesian coordinates R =
(r1, . . . , rN). Since D has a zero diagonal, it contains exactly 1

2
N(N − 1)

elements.
Our plan is to expand the energy surface in a polynomial basis (see Section

2.2). Unfortunately using dij as the variables of the polynomials will be an
unphysical choice since as atoms i and j move far apart (dij → ∞), the
energy would diverge. For this reason, we introduce one more coordinate
change, the so called Morse variables exp(−λdij). To simplify the notation
let K = 1

2
N(N −1) and define the K-dimensional vector z = (z1, . . . , zK) by

z1 = e−λd12 , r2 = e−λd13 , . . . , zK = e−λdK−1,K . (3)

The newly introduced parameter λ is related to the scale of the problem. We
consider λ as an unknown parameter to be inferred from the data.

2.2. Choice of basis functions

Following the recent advances in the field, we introduce a polynomial basis
on the z variables that is invariant with respect to permutation of atoms of
the same type. In [7] computational algebra techniques are used to find a
basis on the space of invariant polynomials using commercial computational
algebra software like MAGMA [32]. In this work, we follow the Monomial
Symmetrization Approach (MSA) of [8] to construct the polynomials.

To introduce MSA consider a cluster of 4 atoms of the same type. In this
case the variable describing the system, z, is 6-dimensional. The energy is
approximated by a sum of monomials up to degree k

Ê(z) =
k∑

a+b+c+d+e+f=0

Ca,b,c,d,e,fz
a
1z

b
2z

c
3z

d
4z

e
5z

f
6 , (4)

where a, b, c, d, e and f are all non-negative integers and Ca,b,c,d,e,f is the

coefficient of the monomial za
1z

b
2z

c
3z

d
4z

e
5z

f
6 . This expression is clearly not in-

variant with respect to permutations of the atoms for arbitrary choices of
coefficients. However, if we demand to have permutation invariance, it turns
out that many of these coefficients must be the same. To give a concrete
example, suppose we permute the atoms as

(r1, r2, r3, r4)→ (r4, r2, r1, r3).
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The corresponding permutation in the distance matrix elements is

(y12, y13, y14, y23, y24, y34)→ (y24, y14, y34, y12, y23, y13)

and so the z variables permute as

(z1, z2, z3, z4, z5, z6)→ (z5, z3, z6, z1, z4, z2).

We want Ê(z) to be invariant under such a permutation, i.e.

E(z1, z2, z3, z4, z5, z6) = E(z5, z3, z6, z1, z4, z2),

which can happen only the monomials za
1z

b
2z

c
3z

d
4z

e
5z

f
6 and za

5z
b
3z

c
6z

d
1z

e
4z

f
2 have

the same coefficient, i.e.

Ca,b,c,d,e,f = Cd,f,b,e,a,c.

Listing all permutations will give us exactly which coefficients should be
equal. The corresponding monomials will sum to form a single basis func-
tion invariant with respect to the permutation group. We call this proce-
dure symmetrization and we denote the symmetrized sum of monomials by
S[za

1z
b
2z

c
3z

d
4z

e
5z

f
6 ] and their common coefficient by Da,b,c,d,e,f . Under this nota-

tion the energy is written as

Ê(z) =
k∑

a+b+c+d+e+f=0

Da,b,c,d,e,fS[za
1z

b
2z

c
3z

d
4z

e
5z

f
6 ], (5)

where the summation is over exponents a, b, c, d, e and f that give a unique
S[za

1z
b
2z

c
3z

d
4z

e
5z

f
6 ]. To avoid unnecessary complications we denote these basis

functions by φi(z), i = 1 . . .M and write the energy as

Ê(z; w) =
M∑

i=1

wiφi(z), (6)

where wi, i = 1, . . . , M are the corresponding coefficients. These polynomials

6



up to degree 3 are:

φ1(z) = 1,

φ2(z) = z1 + z2 + z3 + z4 + z5 + z6,

φ3(z) = z3z4 + z2z5 + z1z6,

φ4(z) = (z3 + z4)(z2 + z5) + z1(z2 + z3 + z4 + z5) + (z2 + z3 + z4 + z5)z6,

φ5(z) = z2
1 + z2

2 + z2
3 + z2

4 + z2
5 + z2

6 ,

φ6(z) = z3z4(z5 + z6) + z1(z3z4 + z2z5 + (z2 + z3 + z4 + z5)z6)

+ z2(z3(z4 + z5) + z5(z4 + z6)),

φ7(z) = z1z2z4 + z1z3z5 + z2z3z6 + z4z5z6,

φ8(z) = z1z2z3 + z1z4z5 + z2z4z6 + z3z5z6,

φ9(z) = z3z4(z3 + z4) + z2z5(z2 + z5) + z1z6(z1 + z6),

φ10(z) = z2
1(z2 + z3 + z4 + z5) + z5(z

2
3 + z2

4 + (z3 + z4)z5)

+ z1(z
2
2 + z2

3 + z2
4 + z2

5) + (z2
3 + z2

4 + z2
5)z6 + (z3 + z4

+ z5)z
2
6 + z2

2(z3 + z4 + z6) + z2(z
2
3 + z2

4 + z2
6),

φ11(z) = z3
1 + z3

2 + z3
3 + z3

4 + z3
5 + z3

6 .

The whole procedure can be carried out using Zhen Xie’s code which can
be found at [33]. One may notice from the basis functions given above, that
many monomials of the zi variables appear again and again. For example
z2
1 appears in φ5 and in φ10. This fact is more pronounced in polynomials

of higher degree. Calculating each basis function from scratch would re-
sult in repetitive calculations of the same monomials and hence it would be
highly impractical. One of the extremely useful features of the above men-
tioned program is that it uses the algorithms described in [8] to break down
the computation of the basis functions in reusable parts. This significantly
reduces the computational time needed for their calculation. We have devel-
oped a Python script that uses the output of this program to produce C++
and Matlab code.

2.3. Sampling the configuration space

We manage to sample the configuration space using Distance Geometry
techniques which have been applied successfully to nuclear magnetic reso-
nance (NMR) structural determination problems [34]. For a review of the
topic and further information on the algorithms described here see [29].
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Algorithm 1 USAMPLE(L, U): Samples a distance matrix from the con-
figuration space C(L, U).

Require: L, U and unif() (a random number generator).
{Construct a matrix D̃ satisfying the bounds and the triangle inequality}
for i = 1 to N − 1 do

for j = i + 1 to N do

{Sample an element i, j uniformly within the bounds.}
d̃ij ← lij + unif() ∗ (uij − lij)
{Update bounds}
uij = d̃ij

lij = d̃ij

{Enforce triangle inequality}
FLOYD(L, U)

end for

end for

{Project D̃ to the closest distance matrix D}
D ← MME(D̃)
if D is not within the initial bounds then

Go to the beginning of the algorithm.
end if

return D

We start by defining the configuration space. Not every possible config-
uration is of physical interest to us - e.g. situations where two atoms are
very close together or very far apart. Furthermore, we may wish to restrict
our attention to regions of the configuration space of particular interest, like
average bond lengths or angles measured in experiments. A very natural
way to impose such constraints to the configuration space is provided via the
Lower Cut-Off Matrix:

L = (lij) (7)

and the Upper Cut-Off Matrix:

U = (uij). (8)

We define the configuration space to be the collection of distance matrices
that lie between these two bounds, i.e.

C(L, U) := {D : D = (dij) is a distance matrix s.t. lij ≤ dij ≤ uij} . (9)
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Algorithm 2 FLOYD(L, U): Update lower and upper bounds of the dis-
tance matrix by enforcing the triangle inequality.

Require: L, U
{Loop over all pairs of atoms N times.}
for k = 1 to N do

for i = 1 to N − 1 do

for j = i + 1 to N do

if uij > uik + ukj then

uij ← uik + ukj

end if

if lij < lik − ukj then

lij ← lik − ukj

end if

if lij < ljk − uki then

lij = ljk − uki

end if

if lij > uij then

print ”Bad Bounds”
end if

end for

end for

end for

return L, U

This is the space we wish to sample. Figure 2.3 shows how the three dimen-
sional configuration space of a three atom cluster looks like.

Sampling a distance matrix within specific bounds is not a trivial task.
A distance matrix corresponding to a cluster of N -atoms needs to satisfy
N different types of inequalities: the triangle inequality, and corresponding
inequalities involving four distances, five distances and so on.

For this reason we use a type of proposal-rejection sampling technique.
We first sample a matrix satisfying the bounds and the triangle inequality
and we project it to the nearest distance matrix in a least squares sense. If
the resulting matrix satisfies the bounds we stop, otherwise we repeat the
procedure. This is outlined in Algorithm 1. To sample the matrix satisfying
the bounds and the triangle inequality we iterate over each (i, j) pair of
atoms. We sample uniformly a distance dij between lij and uij. We set
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Algorithm 3 MME(L, U): It projects D̃ to the closest distance matrix D

in a least square sense. For details see [citation needed].

Require: D̃ = (d̃ij)
Calculate the N -dimensional vector dcm.
for i = 1 to N do

d̃cm,i ← 1
N

∑N

j=1 d̃2
ij − 1

N2

∑N

j=1

∑N

k=j+1 d̃2
jk

end for

If D is a true distance matrix, dcm is the distance of each atom from the
center of mass.
Calculate the N ×N matrix W = (wij).
for i = 1 to N do

for j = 1 to N do

w̃ij ← 1
2
(d̃cm,i + d̃cm,j − d̃2

ij)
end for

end for

If D is a true distance matrix, then W would be the metric matrix of the
cluster i.e. W = (ri · rj).
Compute the three greatest eigenvalues of W , λ1 > λ2 > λ3 and the
corresponding eigenvectors w1,w2,w3.
Define a matrix X of size N × 3.
Let X = (x1, x2, x3) (Column view).
for i = 1 to 3 do

xi ←
√

λiwi

end for

Now each row of X = (r1r2 . . . rN)T (row view) contains a cartesian rep-
resentation of the closest metric matrix to W .
Calculate the distance matrix D associated with r1, . . . , rN .
return D

the bounds corresponding to this distance equal to dij (lij = uij = dij) and
finally refine all other upper and lower bounds so that the triangle inequality
is not violated using the FLOYD algorithm (see Algorithm 2). Finally the
resulting matrix is projected to the nearest distance matrix by employing the
Metric Matrix Embedding algorithm (see Algorithm 3). Figure 2.3 shows the
histograms of the interatomic distances obtained using USAMPLE. Notice
that the sampling is not uniform, but all regions of the configuration space
are covered.
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2.4. Fitting the data

Suppose we have a total of S data points (z(i), E(i))S
i=1. To avoid lengthy

notation we will refer to these data collectively as

D = (z(i), E(i))S
i=1. (10)
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Figure 1: A view of the configuration space for a cluster of 3 atoms.

Figure 2: Histograms of the interatomic distances obtained using the USAMPLE algo-
rithm. The minimum distance is set to 1.2 A and the maximum distance to 13 A. It is
obvious that the sampling is not uniform but any point of the configuration space has the
probability of occurring.
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In this section we will outline how we fit D to the model described in Section
2.2. The usual approach (see [6]) is to fix the scale parameter λ (usually
to 2 − 3 Bohr) and minimize the least squares error. This procedure is
straightforward to implement but has several drawbacks:

1. it can lead in severe overfitting if many basis functions are used.

2. it does not provide a quantification of the uncertainty when doing pre-
dictions.

3. it does not give a systematic way to select the scale parameter λ or test
alternative coordinate transformations than the Morse variables (e.x.
yij = 1/dij as in [10] ).

We propose the use a Bayesian Linear Regression scheme in order to cope
with precisely these problems. We use the generalized linear model given
in Eq. (6) with the additional assumption of an additive noise

E(z) = Ê(z; w) + σZ, (11)

where Z ∼ N (0, 1) and σ2 is the variance of the data. Of course, our ab
initio calculations are deterministic and hence have no noise. However, in
case the basis functions are not adequate to describe the energy surface the
model will fit data with noise. Not being able to interpolate between data
points of the surface, it will assume that their variability is due to a big σ.
That is, the value of σ2 will be an indicator of how good the fit really is.
Under this assumption the likelihood of the real energy E(z) is

p(E|z, w, σ2) = N (Ê(z; w), σ2). (12)

Finally, we pose a Gaussian prior distribution over the weights

p(w) = N (µ0,Σ0), (13)

where N (µ0,Σ0) is the multivariate normal distribution with mean µ0 and
covariance matrix Σ0. It turns out [35] that the posterior distribution of the
weights given the data is also Gaussian

p(w|D) = N (µ,Σ), (14)

with mean and inverse covariance matrix given by

µ = Σ
(
Σ−1

0 µ0 + σ−2ΦT E
)
, (15)

Σ−1 = Σ−1
0 + σ−2ΦTΦ, (16)
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where Φ is the so called S ×M design matrix :

Φ =




φ(z(1))T

...
φ(z(S))T



 ,

with
φ(z) = (φ1(z), . . . , φM(z))T

and the observed energy vector

E = (E(1), . . . , E(S))T .

Selection of the Prior. We propose starting with an isotropic Gaussian prior

µ0 = 0, (17)

Σ0 = αI, (18)

where α is an additional unknown parameter which will be inferred from
the data and I is the M ×M unit matrix. Notice that the prior becomes
uninformative as α→ 0 allowing for a very flexible choice of weights.

Predictive Distribution. The predictive distribution at a new point z can be
calculated by integrating out the weights using their posterior distribution.
Not surprisingly this is a Gaussian also:

p(E|z,D, α, σ2) =

∫
p(E|z, w, σ2)p(w|D, α)dw = N (µTφ(z), σ2(z)),

(19)
where the variance σ2(z) is given by

σ2(z) = σ−2 + φ(z)Σφ(z). (20)

A point estimate of E(z) can be given by the mean µT φ(z). Notice that
we automatically get a quantification of the uncertainty of our prediction
through σ2(z). This will be used in Section 2.7 in the selection of new data
points.

13



2.5. Bayesian Model Selection

In the previous section we have shown how the model fits the data for
a fixed choice of α and σ2. The careful reader would have noticed that the
prediction is also implicitly dependent on the choice of the scale parameter
λ, i.e.

z = zλ(D),

where D is the distance matrix. In a fully Bayesian scheme we would have
to define prior distributions on all those three parameters and then integrate
over them to get the fully Bayesian predictive distribution. This is not an
easy task to perform. In this section we will motivate the so called evi-

dence approximation [36] which, under special assumptions, can provide an
alternative way to solve the problem.

Suppose we have introduced some prior distribution p(α, σ2, λ) on (α, σ2, λ).
By Bayes Theorem the posterior distribution is

p(α, β, λ|D) = p(D|α, σ2, λ)p(α, σ2, λ), (21)

and the fully Bayesian predictive distribution is

p(E|D,D) =

∫ ∫ ∫ ∫
p(E|zλ(D), w, σ2)p(w|D, α)p(α, β, λ|D)dwdαdσ2dλ.

If the posterior is sharply peaked around (â, σ̂2, λ̂) it can be treated as a δ
function and hence the above integral may be approximated by

p(E|D,D) ≈
∫

p(E|zλ̂(D), w, σ̂2)p(w|D, α̂)dw.

Intuitively, this would be the case if the basis functions we are using can
describe the true energy surface and if we have sufficient data at our disposal.
In this case predictions can be made using Eq. (19) at (â, σ̂2, λ̂).

Now the problem becomes to maximize the posterior of the hyperparam-
eters (α, σ2, λ) given by Eq. (21). This is not a trivial task either. However,
if the prior p(α, σ2, λ) is relatively flat (which would be the case if we have
no specific preference about these parameters ), then this maximum will be
effectively the maximum of the likelihood function (see Eq. (21) again):

L(α, σ2, λ) = p(D|α, σ2, λ).
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This function is called the marginal likelihood or the evidence function. Our
model selection problem becomes:

(α̂, σ̂2, λ̂) = arg max
(α,σ2,λ)

L(α, σ2, λ). (22)

In principle it can be solved by conjugate gradient methods. Unfortunately
this would require the derivative of the basis functions with respect to λ which
is a very involved calculation. In our numerical experiments, we exploit the
fact that for fixed λ there exist a robust algorithm (see Chapter 3.5 of [35])
to solve

(α̂, σ̂2) = arg max
(α,σ2)

L(α, σ2, λ),

in order to pose the problem as

λ̂ = arg max
λ

(
max
(α,σ2)

L(α, σ2, λ)

)
. (23)

The optimization over λ can be carried out using Brent’s method (see [37]).

2.6. Error Evaluation

A concrete way to account for the error of the approximation is to leave
out of the fitting procedure some samples and compare the prediction of
their energy with the true value. The measure we propose to use is the mean
square error of the energy per atom

MSE(Dtest) =

√
∑Stest

i=1

(
E

(i)
test − Ê(z

(i)
test)

)2

NStest
, (24)

where we have left out of the fitting procedure Stest data points:

Dtest = (E
(i)
test, z

(i)
test)

Stest

i=1 .

An alternative measure we will also use is the maximum absolute error of
the energy per atom

MABSE(Dtest) = max
i≤1≤Stest

{∣∣∣E(i)
test − Ê(z

(i)
test)

∣∣∣
}

.

Both of them are objective measures of the predictive ability of the fit we
have achieved. Ideally, one would like to see MABSE(Dtest) becoming ap-
proximately the same as MSE(Dtest). This would mean that there are no
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outlying energies and that our fitting is uniform. In Section 2.7 we will use
MSE(Dtest) to define a stopping criterion of our scheme. It will provide us
with a definite way to judge if we need more data points or we have reached
the maximum predictive ability of the chosen basis.

2.7. Adaptive selection of data points

Ab initio data is expensive so we cannot afford to waste any. Inspired
by the seminal paper of Sacks [38], we propose a simple experimental design

Algorithm 4 BFED: Fit the PES of a given cluster.

Require: 1) Cluster type XnYm, 2) bounds of the configuration space
(L, U), 3) maximum polynomial degree dmax 4) initial number of data
points Sinit, 5) number of test samples Stest, 6) number of MC samples
whose variance is tested in every cycle SMC, 7) number of samples that are
added to the fitting procedure after its cycle Sadd.
Generate using USAMPLE(L, U) Stest samples and calculate their ener-
gies. We denote them with

Dtest = (E
(i)
test, z

(i)
test)

Stest

i=1

Generate using USAMPLE(L, U) Sinit samples and calculate their ener-
gies. We denote them with

D = (E(i), z(i))Sinit

i=1

loop

Fit D as described in Section 2.4 and Section 2.5.
if MSEDtest doesn’t change significantly from its previous value then

return

else

Generate SMC configuration point samples using USAMPLE(L, U).
Calculate their variance using Eq. (20).
Find the Sadd of the SMC samples with the maximum variance.
Calculate their energy and add them to D.

end if

end loop
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scheme. The goal is to extract information from existing data that would
help us select new points of the configuration points that will improve our
fit by keeping the ab initio calculations to a minimum.

We have already mentioned that the Bayesian scheme described in Sec-
tion 2.4, provides a natural way to quantify our uncertainty at any point
of the configuration space z through the predictive variance σ2(z) defined
in Eq. (20). This variance represents our lack of knowledge about the PES
and not the real error. It corresponds to the real error (qualitatively) only
to the extent that the selected basis can actually describe the true energy
surface. We postulate that the inclusion of new configuration points with
high Bayesian variance will improve the fitting achieved as measured by the
MSE(Dtest) more than the merely adding random points. This is valid to
the extent that the basis functions we use can actually describe the PES
under consideration correctly. Our numerical experiments have shown that
this is the case for the permutationally invariant polynomial basis alongside
with the Morse variables, if a sufficient number of basis functions are used.
We have found that the number of require energy calculations is reduced
significantly.

Associating the value of σ(z) with the informational content of the point
z, a natural strategy is to add to the scheme the z’s that maximize it.
We use a plain Monte Carlo procedure to identify the important points of
the configuration space. The proposed algorithm, called Brute Force Experi-
mental Design (BFED), is extremely simple to implement since all it requires
is the ability to sample the configuration space and calculate the Bayesian
variance. One starts with some random configuration points, calculates the
corresponding energy and fits them using the scheme described in Section
2.4 and Section 2.5. The MSE is evaluated on some random energies left
out of the fitting procedure as described in Section 2.6. Then we generate
many configuration points within the specified bounds using the USAMPLE
algorithm and calculate the predictive variance of each one of them using the
fitted surface. This is computationally negligible compared to the ab initio
calculations. Finally we select the ones with the maximum Bayesian vari-
ance, calculate their energies, add them to the scheme and refit 2. If the MSE

2The refitting procedure doesn’t have to start from scratch. One can initialize the
α, β and λ parameters at the previously obtained optimum values resulting in improve
convergence the optimization schemes. However, the cost of the fitting procedure is so
small compared to the ab initio calculations that making it faster would have no observable
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of the new fit stops changing, we stop otherwise we repeat the procedure.
This is summarized in Algorithm 4.

2.8. Multi-Body Expansion

One can easily imagine that the energy of a cluster of N atoms with
Cartesian coordinates R = (r1, . . . , rN) ∈ R3N can be written as an infinite
series

E(r1, . . . , rN) =

N∑

i=1

E(ri)+
∑

i<j

V (2)(ri, rj)+
∑

i<j<k

V (3)(ri, rj, rk)+. . . . (25)

The V (K)’s are functions of K atoms and are called multibody potentials.
One can think of

∑
i1<···<iK

V (K)(ri1, . . . , riK) as the energy added to the
system due to interactions between K atoms. It seams reasonable that after
a certain index P , interactions between P +1 atoms are unimportant, so that

V (P+1) ≈ 0. (26)

If this is the case, then we call this expansion a P -order expansion. We
denote the total energy of an N -atom system using a P -order expansion by
EP = EP (r1, . . . , rN). We write

EP (r1, . . . , rN) =

P∑

K=1

E(K)(r1, . . . , rN), (27)

where
E(K)(r1, . . . , rN) :=

∑

i1<···<iK

V (K)(ri1, . . . , rik). (28)

Finally, the V (K)’s can be readily found by using the Möbius inversion ap-
proach from number theory [27, 39]. Möbius inversion has been used pre-
viously for the extraction of potentials from energy data in [40, 41]. We
have

V (K)(r1, . . . , rN) =

K∑

L=1

(−1)K−L
∑

i1<···<iK

E(ri1 , . . . , riK), (29)

where with E we denote the true energy function. Once the multibody
potentials V (K) have been constructed, the P -order energy EP of an N -atom
system can be calculated by using Eq. (27).

benefit.
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3. Numerical Examples

3.1. Pt clusters using EAM energy and GULP

In the first set of examples we wish to test the convergence properties of
the suggested scheme. Due to the computational burden of ab initio calcula-
tions, exhaustive tests can only be performed using an empirical potential. In
what follows we consider solely clusters of Pt with Embedded-Atom Method
(EAM) [42] potential energy as implemented in GULP [43]. The minimum
distance between Pt atoms is taken to be 2 A and the maximum distance 13
A. All energies are in eV.

First, we investigate the properties of the adaptive addition scheme of Sec-
tion 2.7 and demonstrate that it greatly improves the quality of the sampled
energies. Then, we test the convergence of fitting scheme with respect to the
polynomial degree of the basis and finally we compute the EAM Pt7 PES to
assess the applicability of our work to relatively big clusters.

Adaptive selection of data points. Our first goal is to demonstrate that the
adaptive addition of data points (described in Section 2.7) has a positive
effect on the accuracy of the fit. To test this claim, we choose a particular
Pt cluster and:

1. Generate a certain number Stest of random test points and calculate
their energies. These are left out of the fitting procedure and are used
only for the evaluation of the error.

2. We generate Sinit initial random points and calculate their energies.

3. Using the same Sinit initial random points, we run the BFED Algorithm
for different adaptive strategies (varying the number SMC of samples
among which we select the points that should be added to the dataset).

4. For each strategy, we trace how the two error estimates MSE and AMSE
(described in Section 2.6) vary as a function of the number of data
points used to fit the PES.

We perform this test on Pt3 and Pt4 clusters. In both cases we add
Sadd = 100 data points at each step of the BFED Algorithm, set the basis to
polynomials of up to degree 10 and we test the same six different strategies
of adding new data points:

1. No Selection. Sadd totally random points are added at each cycle, i.e.
SMC = Sadd = 100.

2. Choose 100 among 200, i.e. SMC = 200.
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3. Choose 100 among 500, i.e SMC = 500.

4. Choose 100 among 1000, i.e SMC = 1000.

5. Choose 100 among 10000, i.e SMC = 10000.

6. Choose 100 among 20000, i.e SMC = 20000.

For Pt3, the number of test points is set to Stest = 1000 and the number of
initial random points to Sinit = 200. For Pt4, the number of test points is
set to Stest = 3000 and the number of initial random points to Sinit = 500.
In Figure 3 and Figure 4 we plot the evolution MSE and AMSE respectively
for Pt3. Figure 5 and Figure 6 depicts the same quantities for Pt4.

These figures show clearly that the naive random selection technique is
inferior to the suggested scheme. One can notice two underlying properties
of the choice of SMC:

1. The error drops faster as a function of the number of data points, when
SMC is initially increased but

2. there is a natural limit to this effect. In both tests, setting SMS to a
value greater that 1000 does not refine the errors any more.

The former property provides good evidence that the scheme indeed adds
informationally rich data points. The latter, puts a barrier on this improved
performance.

Finally, in Figure 7 we plot the histograms of 1000 sampled Pt4 energies
that resulted from two of the strategies discussed above: the random addi-
tion strategy SMC = 100 shown in Figure 7(a) and the “Choose 100 among
10000” strategy SMC = 10000 shown in Figure 7(b). Notice that the adaptive
strategy yields a considerably broader distribution of energies, covering low
energy (stable) configuration points as well as high energy (unstable) ones.
This effect, i.e. the more uniform sampling of the configuration space, is
the reason why the proposed adaptive scheme actually has this effect to the
observed errors. As the SMC initially increases, provides better sampling of
the configuration space as seen by the distribution of the energies. However,
after a critical value of SMC the “optimum” energy distribution has been
reached and increasing it further has no effect.

Convergence with respect to polynomial degree. An important question that
we want to pose is to what extent does the choice of the polynomial degree
effects the accuracy of the final PES. There are basically two reasons why
one should care about this:
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Figure 3: Pt3: evolution of MSE(Dtest) as the number of samples increases.

1. If the polynomial degree is low, the basis has low expressivity and it
might not be able to capture the real PES and

2. increasing the polynomial degree arbitrarily might result in overfitting
which would yield a PES with limited predictive capabilities.
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Figure 4: Pt3: evolution of MABSE(Dtest) as the number of samples increases.
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To resolve the first problem, the natural strategy is to use higher order poly-
nomials. In the case study that follows it is clearly demonstrated that the
second problem (overfitting) is missing from our scheme. This is due to its
Bayesian nature. We consider a Pt4 cluster and fit its PES using polynomials
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Figure 6: Pt4: evolution of MABSE(Dtest) as the number of samples increases.
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Figure 7: Pt4: The histograms shows 1000 data points used in the fitting procedure. 7(a)
shows data points selected completely at random while 7(b) shows the end result of the
proposed scheme when selecting 100 out of 10000 data points.

of 4th, 6th, 7th, 8th and 10th degree. For each degree we use exactly the
same Stest = 100 and Sinit = 1000 test and initial data points, respectively.
The adaptive addition strategy is “choose 100 among 10000” (Sadd = 100
and SMC = 10000). To give a pictorial representation of the convergence, we
fix atoms 2, 3 and 4 to

r2 = (1.1, 1.1, 0),

r3 = (−1.1, 1.1, 0),

r4 = (1.1,−1.1, 0),

and we plot the energy as a function of the position of the 1st atom allowing
it to move on the z = 0 plane, i.e.

r1 = (x, y, 2.1).

We choose this particular set up because for r1 = (0, 0, 2.1), we obtain close
to the tetrahedral stable configuration of Pt4, thus the test is performated
in a region of the configuration space of a high variability in energy. Figure
8 depicts the corresponding cut of the PES for each polynomial degree. The
EAM energy is also shown for reference. One can clearly notice that after
degree 7 the picture stabilizes. Figure 9 shows the absolute error the 6, 7, 8
and 10th degree PES. This is evaluated by comparing the predicted energy
at each point with the true EAM value.
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Demonstrating the scheme’s accuracy for big clusters. As yet another case
study, we test the accuracy of the scheme used for relatively big clusters. We
fit the EAM PES for Pt7 using 5th degree polynomials, Stest = 100, Sadd =
100 and SMC = 1000. We add data points until subsequent values MSE do
not differ more than 10−3. The total number of “electronic” calculations is
2000. In Figure 10, we compare the fitted energy to the true EAM energy as
a function of the x-y position of the first atom

r1 = (x, y, 0),

while keeping the rest fixed to

r2 = (2, 2, 2.1),

r3 = (2,−2, 2.1),

r4 = (−2, 2, 2.1),

r5 = (−2,−2, 2.1),

r6 = (0, 0, 2.1),

r7 = (0, 0,−2.1).

Again, this is a region of high variability in energy. We observe that the PES
remains fairly accurate even for this relatively low polynomial degree.
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3.2. Pt clusters using DFT calculations

In what follows, ab initio calculations were performed using density func-
tional theory (DFT) in the local density approximation (LDA) as imple-
mented in the PWSF software package [44], using the Perdew-Zunger parametriza-
tion of the exchange correlation energy and Rabe-Rappe-Kaxiras-Joannopoulos‘[45]
(ultrasoft) pseudopotential. The cell size was taken to be sufficiently large
(4 times the maximum interatomic distance, a.k.a. 0.05 to 0.2 nano-meters )
to effectively simulate an isolated cluster. The energy cut-off was 22 Ry (≈
300 eV). One k-point was used for the plane wave basis. The above param-
eters where chosen so that the accuracy of the DFT calculations was within
0.01eV/atom. All distances are in Bohr and energies in Ryd unless otherwise
specified.

We computed the DFT PES for Pt2, Pt3, Pt4, Pt5 and Pt6 clusters.
The data collection procedure was parallelized using MPI [46] so that each
CPU core computed a single data point. In all computations we used SMC =
10000 and Sadd = 256. The minimum cut-off distance was set to 3.7 Bohr
for all clusters. The maximum cut-off was set to 14 Bohr for Pt2 and 10
Bohr for all others cases. We stopped the BFED Algorithm either when
MSE per atom was less than 1e − 03 Ryd, or when its change between two
consecutive iterations was less than 1e− 05 Ryd. Table 1 shows the detailed
parameters of each run along with the computational resources that were
required. The vast majority of the computational time was spent in ab initio
calculations. For example, the Pt5 PES required approximately 39 hours
using 256 CPU cores from which only 6 minutes was spent to actually fit
the data. The computational effort put in our fitting scheme can safely
be neglected in comparison to the cost of the DFT calculations. In the
Pt6 calculation we were forced to use a smaller polynomial basis because
of the computational burden involved. This resulted in a considerably less
accurate PES. In several cases - for example when the random clusters were in
highly unstable configurations - the DFT self-consistent calculations failed to
converge within 100 iterations. The configurations for which this happened
were removed from the data set.

After assisting the accuracy of the fitted surfaces, we use them to com-
pute stable structures of small Pt clusters and compare the results with the
literature. We continue by investigating the decomposition of the PES in
K-body potentials VK . Finally, we put these potentials together to explore
the predictive capabilities of raw MBE.
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Accuracy of the fitting procedure. Table 2 shows the errors of each of the fitted
PES as measured using the test points left out of the scheme. We show both
the Mean Square Error as well the Maximum Absolute Error (Section 2.6).
Notice that the Maximum Absolute Error is of the order of 1e-03 Ryd (≈
0.01 eV ) per atom which is exactly the accuracy of our DFT calculations.
Figure 11 gives a pictorial representation of the goodness of fit. For a given
cluster we plot the true DFT energy versus the energy prediction for each
test data point. The horizontal axis of the plots corresponds to the DFT
calculated energy and the vertical axis to the prediction of the energy using
the fitted PES. The straight line is the y = x line. The deviation of each red
point from this line represents the error of the corresponding test point. It is
apparent that the predictions become more noisy as the cluster size increases.
However, the important feature that one should notice is that the error is
uniformly bounded over the energy range.

Using the fitted PES to predict stable structures. As an elementary applica-
tion, we use the fitted PES to predict stable Pt structures of up to 6 atoms.
The optimization is performed using the Simulated Annealing technique [47]
as implemented in the GSL library [48]. The quantities we report are the
average bond length, the symmetry of the structure and the binding energy.
The binding energy EB is defined by

EB = Eatom − Ecluster/N, (30)

where Eatom = E1 = −52.157Ryd is the one atom energy (see next paragraph
for details on how we get calculate this), Ecluster is the energy of the stable
cluster and N the number of atoms. Table 3 summarizes our results. For easy
comparison with the results in the literature lengths are reported in A and
energies in eV. Overall, we obtain the same stable structures as the ones found

Cluster Degree No. Basis Sinit Stest Sfinal CPU Cores Time
Pt2 10 11 512 128 512 128 03:05:16
Pt3 10 67 1024 256 1024 128 09:31:53
Pt4 8 195 1024 256 1279 256 17:11:06
Pt5 8 580 1024 256 3071 256 39:30:57
Pt6 5 86 1024 256 1280 256 17:12:31

Table 1: Computational details of the fitting procedure of Pt clusters.
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Cluster MSE(Dtest) MSE(Dtest)/Atom MABSE(Dtest) MABSE(Dtest)/Atom
Pt2 2.2e-03 1.1e-03 4.9e-04 2.4e-04
Pt3 1.2e-02 3.9e-03 5.1e-03 1.7e-03
Pt4 2.9e-02 7.3e-03 8.0e-03 2.0e-03
Pt5 4.9e-02 9.7e-03 1.6e-02 3.1e-03
Pt6 1.4e-01 2.3e-02 2.9e-02 4.8e-03

Table 2: The definition of the errors

Notation Pt3 Pt4 Pt5 Pt6-1 Pt6-2

Structure
Bond Len. (A) 2.43 2.54 2.50-2.59 2.50-2.7 2.43-2.57

Bind En. (eV/atom) 3.25 3.63 3.94 4.19 4.23
Symmetry C2ν Cs D3h C2ν C2ν

Table 3: Stable structures of Pt clusters predicted using the fitted PES.

in [49]. The bond lengths predicted are slightly smaller than the ones found
in the literature while the binding energies greater. These differences were
expected, since in [49] they employ the generalized gradient approximation
(GGA) instead of the LDA we use in the present work. However, the behavior
of both the binding energy as well as the average bond length as a function
of the cluster size is consistent with the [49] results. A comparison is shown
in Figure 12.

Decomposition of the PES in potentials. The values of the potentials VK can
be approximated through the Möbius transformation Eq. (29) by using the
fitted PES in place of the real one. We use the values thus obtained to fit
the potentials using exactly the same regression scheme as the one used to
fit the PES. The polynomial basis of the K-order potential VK is chosen to
be the same as the one used to fit to PtK PES. The one-atom energy E1(r)
is equal to half the limiting value of the fitted energy E2(r) of two atoms as
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the interatomic distance goes to infinity, i.e.

E1 =
1

2
lim
r→∞

E2(r) ≈ −52.157 Ryd.
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Figure 11: Testing the goodness of fit using full DFT calculations of random clusters. For
Pt2 we use 128 energies and 256 for Pt3, Pt4, Pt5 and Pt6.
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This is half the amount of energy required to disassociate the two atom
system. Figure 13 shows the original E2(r) and the derived potential V2(r).
Visualizing the higher order potentials is best achieved by showing a two-
dimensional piece of the configuration space. In Figure 14 we consider a Pt3
cluster and plot E3, V2 and V3 as a function of the x-y position of the first
atom

r1 = (x, y, 3.7),

while keeping the rest fixed to

r2 = (−2.2, 0, 0),

r3 = (2.2, 0, 0).

Figure 15 shows E4, V2,V3 and V4 as a function of the x − y position of the
first atom

r1 = (x, y, 3.7),

while keeping the rest fixed to

r2 = (−3.7, 0, 0),

r3 = (3.7, 0, 0),

r4 = (0, 3.2, 0).

Figure 16 shows E5, V2,V3, V4 and V5 as a function of the x − y position of
the first atom

r1 = (x, y, 3.7),

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Pt2
 Pt3
 Pt4
 Pt5
 Pt6


B
in

di
ng

 E
ne

rg
y 

(e
V

/a
to

m
)

(a) Binding Energy (ev/atom)

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

Pt2
 Pt3
 Pt4
 Pt5
 Pt6

B
on

d 
Le

ng
th

 (
A

)

(b) Bond Length (ev/atom)

Figure 12: Comparison of binding energy and average bond lengths obtained using our
fitted PES for Pt2, Pt3, Pt4, Pt5 and Pt6 with the results found in the literature [49].
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while keeping the rest fixed to

r2 = (−3.7, 0, 0),

r3 = (3.7, 0, 0),

r4 = (0, 3.2, 0),

r5 = (0,−3.2, 0).

Finally, Figure 16 shows E5, V2, V3, V4, V5 and V6 as a function of the x− y
position of the first atom

r1 = (x, y, 3.7),

while keeping the rest fixed to

r2 = (0, 0, 0),

r3 = (−6.4, 0, 0),

r4 = (6.4, 0, 0),

r5 = (3.2, 6.4, 0),

r6 = (−3.2, 6.4, 0).

The key observations one can make out of these figures are:

1. The sign of the interatomic potential is systematically reversed from
one order to the other, i.e. V2 and V4 are negative, while V3 and V5 are
positive.

2. VK is indeed becoming less and less important as K increases.

3. The importance of each VK becomes greater in regions of the configu-
ration space of low energy.

MBE approximation to ab initio energies. In what follows, we denote with
MBE-K the Multi-Body Expansion of order K given by Eq. (27) and Eq.
(28) of Section 2.8. We wish to investigate to what extent MBE-K can
accurately predict electronic energies of Pt clusters with number of atoms
N > K. Figure 17 shows the predictions of MBE-2, MBE-3 and MBE-4 on
256 Pt4 test points. Figure 18 shows how the surface of Figure 15 can be
approximated by MBE of order 2, 3 and 4. Figure 19 shows the predictions
of MBE-3, MBE-4 and MBE-5 on 256 Pt5 test points. Figure 20 shows
how the surface of Figure 16 can be approximated by MBE of order 3, 4
and 5. Figure 21 shows the predictions of MBE-4, MBE-5 and MBE-6 on

32



256 Pt5 test points. Figure 22 shows how the surface of Figure ?? can be
approximated by MBE of order 4, 5 and 6. Based on these results one can
conclude that:

1. MBE-3 can give a qualitatively consistent picture of the Pt4 PES but
for ab initio accuracy MBE-4 is needed (Figure 18).

2. MBE-3 completely fails to give a good Pt5 PES. MBE-4 gives a qual-
itatively consistent PES but MBE-5 is needed to achieve ab initio ac-
curacy (Figure 20).

3. MBE-4 captures many important features of the Pt6 PES, MBE-5 per-
forms much better but without ab initio accuracy (Figure 22).

4. In Figure 22 we notice that MBE-6 does not reproduce the exact Pt6
PES.

It is evident that MBE-4 or higher is required to get a qualitatively cor-
rect PES for Pt clusters. However, the applicability of relatively low order
MBE to bigger clusters requires further investigation. The final point, is a
demonstration of another difficulty that needs to be addressed. The reason
why MBE-6 fails to reproduce the exact Pt6 PES is the small errors intro-
duced to the potentials VK during their fitting procedure. This error is of the
same order as the accuracy of the ab initio calculation but it propagates in
a complicated manner through the Multi-Body Expansion Eq. (27) possibly
amplifying itself. Even if the error of each VK is reduced, application of raw
MBE to sufficiently large clusters could potentially amplify it. The nature
of this propagation is largely unknown and further research is required to
address it properly.
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Figure 13: Pt2: Extracting the V2 potential from the PES.
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Figure 14: Pt3: Decomposition of the energy of a Pt3 cluster.

Using MBE to predict the energies of larger clusters. In this very last exam-
ple, we sample some Pt clusters with number of atoms N = 7, 8 and 10, cal-
culate their ab initio energies and compare them to MBE-K K = 2, 3, 4, 5, 6.
Figure 23 plots jointly all the results. Notice that the main contribution to
the expansion comes from the one energy terms and that potentials add cor-
rections of the order of 1−2 Ryd. The accuracy after MBE-3 for Pt7 and Pt8
of the order of 0.05 Ryd (0.6 eV) per atom which is below our goal of 0.01 eV
per atom. Furthermore, notice that despite the fact that consecutive MBE
approximations fluctuate about the correct value of the energy, they don’t
seem to converge (up to order 6). As a matter of fact, the oscillations are
more pronounced for the largest Pt10 cluster. We believe that this is a clear
demonstration of the unaccounted propagation of the error in the potentials
we first observed in the results of the previous paragraph.
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Figure 15: Pt4: Decomposition of the energy of a Pt4 cluster.
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Figure 16: Pt5: Decomposition of the energy of a Pt5 cluster.

35



−209.7 −209.6 −209.5 −209.4 −209.3 −209.2 −209.1 −209 −208.9 −208.8
−210.4

−210.2

−210

−209.8

−209.6

−209.4

−209.2

−209

−208.8

−208.6

−208.4

True Energy (Ryd)

P
re

di
ct

ed
 E

ne
rg

y 
(R

yd
)

 

 

y = x
MBE−2
MBE−3
MBE−4
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Figure 19: Pt5: Comparing the prediction of successive MBE approximations on 256 test
points.
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Figure 20: Pt5: Prediction of successive MBE approximations
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Figure 21: Pt6: Comparing the prediction of successive MBE approximations on 256 test
points.

38



MBE−4

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12
MBE−5

 

 

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

MBE−6

 

 

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12
Fitted PES

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

−313.9 −313.8 −313.7 −313.6 −313.5 −313.4

Figure 22: Pt6: Prediction of successive MBE approximations
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4. Conclusions

The construction of ab initio accurate Potential Energy Surfaces consti-
tutes a problem of extreme complexity, albeit of vital importance towards
the search for materials of extremal properties. The computational cost of ab
initio calculations makes mandatory the search for sophisticated techniques
to tabulate ab initio data. The Multi-Body Expansion provides a mathe-
matically rigorous framework that allows one to break down the PES of an
arbitrarily sized cluster to interatomic potentials of relatively small order.
These potentials are connected to Potential Energy Surfaces of small order
through the Möbius transformation. In this work, we presented a set of com-
putational techniques to efficiently solve the PES interpolation problem. The
potentials can be interpolated using the exact same scheme.

We defined mathematically the configuration space and provided algo-
rithms derived from the Distance Geometry literature to efficiently sample
it. The recently developed multinomial expansion method was called to pro-
vide a polynomial basis invariant with respect to permutations of like-atoms.
This provided us with candidate functions that satisfied all invariance prin-
ciples of an energy surface. We introduced a Bayesian Linear Regression
scheme to fit the weights of the polynomial basis as well as the evidence
approximation to optimize the scale parameter. The variance of the predic-
tion was used to devise a simple, yet effective, way to adaptively add data
points. We demonstrated that this new technique considerably improves the
quality of the samples obtained and outperforms the random selection of
data points. Furthermore, it minimizes the number of ab init calculations
required enabling us to construct the ab init PES of Pt clusters of up to 6
atoms using a reasonable amount of computational resources. The ab initio
PES was used to find the stable structures of small Pt clusters with the aid of
Simulated Annealing. The results were found to be in good agreement with
the literature. The constructed Pt PES was also used to fit the interatomic
potentials up to order 6. It was shown that those become less and less impor-
tant as their order increases, albeit slowly in low energy regions. We used the
potentials to investigate the performance Multi-Body Expansions of various
order for Pt clusters of up to 10 atoms. It was demonstrated that interac-
tions of at least 5 atoms are required to qualitatively describe Pt clusters.
Finally, we observed that the error introduced during the fitting procedure
of the interatomic potentials propagates in a complicated manner through
the Multi-Body Expansion formula making its naive application to big clus-
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ters questionable. It is the object of our current research to investigate the
propagation of this error through the MBE formula and design effective tech-
niques to filter it out. We believe that such filtering schemes have to be case
specific (different for each material) and should utilize further physical infor-
mation. This problem constitutes the final obstacle towards the construction
of fully transferable potential energy surfaces using the MBE framework.
The impact of such reduced-order fully transferable PES is expected to be
significant in the search for new materials, exploring materials and materials
surface design, optimizing mechanical and thermophysical properties, etc.
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